
PPDG Site AAA Issues List
The PPDG Site AAA project has two parallel working documents. This first is an

issues list to capture the concerns with function and operation of the GRID tools

currently under PPDG review. Some of these issues will have various resolutions

with varying requirements. Some will have common requirements and/or

resolution.

The second document in the set is a requirements list that all acceptable

software must meet. It is expected that not all issues result in requirements,

however all requirements should have a corresponding issues discussion.

1. Identity and Registration

Each Grid entity (a person, a machine, or a process) that needs to

engage in a Grid communication must have one (or more) Grid

identities. The Grid Identity identifies the party in the Grid

communications and must suitably resolve ambiguity. It may be the

case that more than one entity can assert a Grid Identity, but a Grid

Identity must refer to a well defined set of entities.

1. Certificate Authorities

The primary purpose of Certificate Authorities is to provide certificates

which define a Grid Identity. The identity consists of at least two parts –

a unique name and the public x509 key -- bound together in a

certificate. Sites expect that Certificate Authorities operate a service

that ensures that

a. certificates are unique,

b. CA infrastructure is operated such that unauthorized

certificates aren’t created,

c. the certificate is delivered to the appropriate party.

2. Registration Authorities

Identifying the appropriate party is often separated from the

function of generating the certificate. The Registration Authority is

the CA’s agent who matches a person with a request. The sites rely

on the Certificate Authorities to ensure that the Registration

Authorities:

1. determine that the person requesting the creation (or

revocation) of an identity is the/an appropriate person to do

so.

2. determine that the person requesting the creation (or

revocation) of an identity meets the qualifications required by

policy.

3. gathers all required information and verifies that it is correct

and/or comes from a trusted source

4. maintains the ability to contact the individual granted an

identity in case of incident handling.

3. Name Constraints

In order to ensure that a Grid Identity is unique, namespaces for

each CA are defined and namespace limitations need to be

enforced. That is, policy in the system must deny certificates issued

by CA X that are not within the namespace of the CA (NASA CA

can’t issue certificates in the name of DOE Science Grids, and visa

versa). Currently this is enforced by each Grid Resource

maintaining a signing policy file for each CA that is trusted. This is a

maintenance burden and investigation of use of x509 name

constraints may lead to efficiencies here (as well as remove a

source of configuration trouble). The use of name constraints is not

widespread in the SSL community, so this will have to be evaluated

for optimal efficiency. The responsibility for determining that there

are no overlapping namespaces is not defined at this time. The

current default is that each Resource Provider must determine this

for themselves as part of the decision to accept credentials from a

particular CA.

4. VO Membership Registration

Sites, as resource providers, have a common requirement that

users of their resources agree to an acceptable use policy. Since

the CAs do not usually know which resources might be used, they

are not in a position to act as agents for the sites. The VOs are

expected to act as agents for the sites in this regard. To do so, sites

will rely on VOs to have a registration process that collects the

necessary information, verifies it, and ensures that the the user

accepts the appropriate Acceptable Use Policies. This process is

quite similar to that run by the RA’s above, but in general, they do

not have access to each others data. It is not clear whether this is

in fact desirable, but the tools and methods should be common.

2. Authentication

Authentication refers to the process of determining that the entity asserting

an identity is the intended one(s). Authentication credentials are the data

used to prove authentication. Authentication is typically of 3 different types

of entities, that have different assumptions and natural methods: Users,

Hosts and Services. The GSI/PKI authentication methods for Hosts and

Services are quite similar in principle (if not revocation usage) to those in

common use now. The discussion below concentrates on User

Authentication.

Implicit in the discussion of authentication is the question of incident

handling. All authentication systems can be defeated (some more easily

than others) and all rely on some parties to keep secrets. The question of

who is responsible to do what when an authentication is challenged (for

example, when the request made is deemed to be harmful) depends on

the authentication system used and has not been explored in detail in this

project. Discussions between representatives of all parties (users, Identity

providers, Resource providers, Virtual Organizations, and Resource

Owners) need to be held to reach the best compromise in convenience,

efficiency and risk acceptance.

1. Interactive User Authentication:

Under the current Globus Toolkit infrastructure, a user

authenticated request is commonly generated today in one of two

ways:

1. The most common situation is that a user maintains a private

key in an encrypted form on their local machine. When they

want to compute "on the Grid", they decrypt this key (by

providing a passphrase) and use it to generate a temporary

X.509 proxy credential, which is then used to authenticate

subsequent requests to remote resources.

2. An alternative strategy, used at some sites, is for the user to

authenticate to an online Proxy Generation Service and

create the proxy credentials. The Kerberos Certificate

Authority (KCA) provided by the NSF Middleware Initiative is

one example of such a service.

3. A third method uses "smartcard" solutions (virtual or

physical) which escrow the individual’s private key and

effectively act as individual proxy generators. Since the

smartcards do not export the long-term private key and are

much more resistant to attack than desktop systems, they

share many of the same features as the on-line proxy

generator service. For purposes of this discussion, they are

treated as equivalents to method #2. MyProxy (from NCSA)

and Virtual Smart Card (from SLAC) are examples of this

method.

NB: We consider proxy repositories (e.g. MyProxy) to be distinct

from proxy generation services (e.g. KX509) because in the former,

the user may still retain the ability to make a proxy from (another

copy of) the long-term credential. In the second, the user does not

have that ability.

In approach 1.1.1 above, two forms of credential are at risk:

a. The user private key exists on a user-owned file, in

encrypted form. So there are presumably several

possible risks to be concerned about:

i. the user might make that file world readable (and

surely some users will do so), in an environment in

which other users have access to the relevant file

system

ii. storage system security is such that read access

to the private key file is vulnerable to capture (e.g..

network sniff of file system transfer, etc.)

iii. the user might choose a pass phrase that is easily

"broken" by someone who gains access to the file

system

b. The proxy credential private key exists in a user-only-

readable file, in *unencrypted* form. This key is

vulnerable to the same exposure risks noted above.

However, the value of this key is time-limited and that

lifetime cannot be altered by the possessor of the key.

Therefore the vulnerability introduced here is similar to

that of many other successfully deployed systems (AFS,

Kerberos, etc.)

In the case of proxy generators and smartcards, usually, only the

second credential is at risk to user/system misconfiguration. The

first credential is at risk to theft/misuse via two primarily means:

c. the user who exposes the access secret needed to

generate the proxy (e.g.. password written on desktop,

etc.)

d. misconfigured or vulnerable proxy generation servers

might allow unauthorized users to access/create proxies.

There is considerable discussion on what protection measures are

necessary for the short-lived proxy credential as well as services

that create them. It's clear that the lifetime of the proxy is a critical

parameter in those discussions.

2. Unattended User Authentication:

There is a hybrid case (unattended user jobs) that has

characteristics of both a user and service. The most frequent

manifestation of this usage case are batch jobs and cron jobs. One

can think of cron as a very simplistic batch system. In such a case,

some service (the batch system, cron, etc.) is receiving a request to

perform some task on behalf of the user. There are two

authentications needed, which may in principal be widely separated

in time. First the authentication of the request for a command to be

run and second the authentications needed by the command at

time of execution. The first can, in almost all cases, use the normal

user authentication methods described above and is pseudo-

realtime. The second typically wants to grant the user's

authorizations (or a dynamic, usually difficult to define subset) to

the command. There are three general approaches:

1. The executed command authenticates as the user and

requests made are indistinguishable from those made

interactively by the user.

2. The command authenticates as an identity algorithmically

derived from (but separate from) the user. Commands are

issued as that derived identity.

3. The command authenticates as the "batch" service.

Whichever approach is taken, the operator of the batch service will

necessarily have the ability to authenticate as the identity used for

the lifetime of the authentication "secret". Depending on the skill of

its administration, attackers of the batch system can gain that ability

as well.

Approach 1 exposes the users (sole ?) identity to the full risks of

unattended operation and allows for no distinguishing action in

event of compromise/failure.

Approach 2 requires the maintenance of multiple identities per

person (though they may be automatically associated with the

primary identity) and for specific inclusion of those separate

identities in the resource access control lists.

Approach 3 presumes the resources to be accessed by the job are

either a) fully available to (any user of) the batch service or b)

managed by a service that can carry on a trusted authorization

based on the user identity as authenticated by the batch service.

Different elements of the Grid architecture are required to

implement services (and enforce policy) depending on which

approach is taken. It is not clear whether all approaches are

mutually compatible or which are operationally preferred. This is an

area in need of concentrated development.

3. Revocation of Authentication:

All authentication relies on some secret (password, private key file,

hardware token, etc.) that can be compromised and used by

unauthorized persons. In this regard, user, host, and service

authentication share a common concern.

Determining whether authentication secrets (and which) have been

compromised and preventing (further) exploit of the secret for

unauthorized used is a core part of incident handling. The

questions of what constitutes a compromise of a private key and

who needs to do what in cases of private keys believed to be

compromised have yet to be resolved. The scope of this question is

also beyond the scope of just sites (Resource Providers) and

includes Identity Providers, VOs, users and operations managers.

In the event of a compromise, that authentication ability must be

revocable on a timescale appropriate to the compromise. For

example, the timescale for the need of revocation of a stolen

private key file is a function of the strength of its passphrase

encryption. If there is none (or the passphrase is also stolen), then

the timescale needed is immediate. If it is a still secure, 20

character, random passphrase, the timescale is millennia. A

standard operational assumption is that revocation needs to

happen within ~24 hours. Authorization restriction methods are

presumed to handle reaction times shorter than that.

Every authentication process needs to invoke tests to determine if

the authentication "secret" is a) correct and b) has not been

revoked.

In the case of compromise, one does not usually want to invalidate

the identity, but rather the authentication secret (replacing it and

invalidating the earlier one). In most authentication systems widely

deployed today, the system queried to determine correctness of the

authentication secret is the same one that determines its validity.

Thus updating the authentication system is a simple matter of

updating the copy (or hash) of the secret held by the authentication

server. (For example, one sets a new password with: the local

password file, the NIS password file, the KDC (AFS, W2K, KRB5)).

With PKI those two functions are split. One can test the correctness

of the authentication secret (possession of the private key) directly.

This is the basis of the claimed benefit of PKI that no critical central

service is required. However, there is no way to determine by

inspection whether a authentication secret which was once valid, is

still valid. To do so one must consult an independent authority,

which introduces a critical service back into the picture.

Furthermore, there is no way, once the private key corresponding

to certificate has been compromised, to "fix" the certificate with a

new private key. It must be abandoned -- permanently and

universally.

The Grid Identity is the certificate generated by a trusted CA. There

may be multiple certificates (valid, expired, and revoked) issued for

any one individual. To determine which certificate/private key pairs

are valid one has to consult the certificate issuer. Since a validity

decision is time dependent, this check must be done for every

authentication.

(Alternately, one could refuse to revoke authentication secrets and

push this responsibility onto authorization. Regardless, there has to

somewhere be a reliable assertion that the authentication secret(s)

is(are) not known to be compromised.)

The current Globus method of determining if a certificate is still

valid is to presume success and examine a Certificate Revocation

List (CRL), if available. (The presumption of success and fail open

decision means the system is vulnerable to an attacker who can

block access to the CRL.) It requires each relying party to have

access to a CRL (or an on-line lookup) for each CA in every

certificate chain presented. The maximum allowed age of the CRL

is the maximum tolerated latency for revoking certificates. (i.e.. to

have a 1 day response, one must get new CRLs every day or use

on-line lookups.)

The CRL is unique to each signing party. Thus in a chain of

certificates, not only must the signature be checked, but also that

that the signing CA's CRL does not list the certificate signed as

invalid. An example is probably in order (since my brain hurts at

that text ;-). If CA A generates a certificate for CA B who generates

a certificate for user C, then to determine if the authentication for

user C is valid, one must:

e. Check that the proof of possession of private key for C

(using the certificate for user C) succeeds.

f. Check that CA B's signature of C's certificate is valid

(using the certificate for CA B (generated by CA A)).

g. Check that C's certificate is still valid (i.e. not expired, not

on the CRL for CA B, etc.)

h. Check that CA B is allowed to generate C's certificate.

(i.e. name constraints obeyed)

i. Check that CA A's signature of B's certificate is valid (

using the certificate for CA A stored on the system).

j. Check that CA A's certificate is still valid (i.e. not expired)

k. Check that CA A is allowed to generate B's certificate.

All this must succeed to have reliable authentication.

3. Authorization

Authorization is the process of determining whether the identity may be

granted their request. An authorization token is some data, the possession of

which, perhaps in conjunction with some other authentication or identity

information (most commonly the private key corresponding to the Grid Identity

involved) allows an entity to prove authorization. Authorization tokens are not

handled in any standard fashion in the Grid. If they are deemed to be useful,

and there is much discussion on this matter, then handling them will require

standardization efforts.

The authorization decision process consists of a number of questions.

Discussions of authorization engender a number of questions. The two sets

are mixed below.

1. Who are the necessary authorizing parties ?

This may in fact, be a complex question and require a syntax for

expressing requirements in general. However, our discussions

seem to keep coming back to a three tier system: resource

manager, resource owner (site), VO. If each of these allows

arbitrary complexity, then it seems reasonable that one could cover

the required space with these three entities. However, since it's

more than 2, dealing with the case of arbitrary number of

authorizing parties may be an easy extension of this minimum.

A possible solution would be to use a PAM-like framework for

authorization decisions at the Resource level. In this model, the

Resource Managers would be responsible for structuring the

authorization logic appropriately for their resource. This would

involve a negotiation with the parties to which they provide service

and result in a decision tree using decision modules provided by

the authorizing parties. As an example, a general Compute

Element at Fermilab, would have a decision tree something like

this:

1. Check FNAL site authorization

2. Loop over VO membership attributes until pass

� If CDF_member=true

� check CDF authorization (is this a hierarchy

itself ?)

� check Resource CDF authorization

� If D0_member=true

� check D0 authorization

� check Resource D0 authorization

� If CMS_member=true

� check CMS authorization

� check Resource CMS authorization

� else

� check Default authorization

� check Resource Default authorization

end loop

3. Fail if no authz check passes.

This would imply that the VO membership information is available

with the request (e.g. in a attribute in the proxy certificate).

Alternately, one could have the membership checks done in

realtime (at the expense of another critical path service).

2. What data may authorization decisions require ?

In principal, authorization decisions can be based on any arbitrary

data the authorizing party chooses. The presumption that the

information presented in the SSL (or GSI) connection

authentication is sufficient is, in general, false. Already within the

sample of the 5 labs participating in this study, we are seeing

instances where the GSI information is insufficient to meet site

requirements except in very restrictive configurations. Furthermore,

applying different authorization requirements based on the request

being made is not accommodated. To allow Grid Resources to

have autonomy in their authorization, the request authorization

interface has to be generalized. There are at least 3 ways this could

be done:

1. Have the resource advertise the information needed for

authorization and have the requestor present this information

with the GSI credential in a standard fashion.

2. Have the resource negotiate authorization methods (and

information) with the requestor (ala SASL).

3. Have the resource fork a separate authorization process to

obtain the needed authorization information from the user (or

the user’s agent).

The first option means that a standardized method of encoding

authorization information in GSI proxies has to be developed. This

is the method being pursued by the EDG and CAS projects. It

further assumes that all authorization tokens can be presented

securely by the client without a interactive response from the

resource. This makes challenge/response methods difficult to deal

with (but perhaps the presumption that a Grid Resource cannot

have interactive response back to the submitting user is a practical

one). It requires the requestor to appropriately construct the proxy

based on the service being requested..

The second option is more forgiving of requestor preparation, but

requires a more complex protocol than the current GSI. A

framework like SASL that allows for client software to be enhanced

with new methods by addition of a (system) library and for servers

to present a list of acceptable methods would be appropriate here

and a useful way to avoid frequent redistributions of clients to

permit new methods (or fix old ones).

The third would have to be able to determine the reverse mapping

from Grid Identity to the appropriate callback location/method.

While this may be a viable option in the OGSA, it is not being

investigated to our knowledge.

When is authorization checked ?

The current model is that authorization to receive a service is

checked (only) at the time of the request. Since there are requests

down a hierarchy of Grid Services to the lowest level Grid interface,

functionally this means that authorization is checked by every Grid

Service at its own discretion. Once a service request has been

granted is there reason to force rechecks of the authorization ? This

seems best to be an item best left to the Grid Service provider.

They could implement periodic rechecks at their discretion, but

there seems no systematic reason to insist on it.

3. How is authorization revoked ?

The initial answer seems to be for authorized actions to be atomic

and have no revocation method. For the purposes of handling

tokens, this may be acceptable. However, it must be possible for an

authorizer of an atomic action to kill the request. Consider the case

of the user who submits 10 copies of a job, 9 long and one short

test job. If examination of the test job indicates the code has a bug,

the user may well want to kill the 9 long jobs even/especially if they

are currently running. Is this to be accomplished by revoking the

authorization of the existing jobs or by issuing a second request to

every grid resource used asking to abort the previous one ?

4. May authorization be delegated ?

It may be acceptable for some requests to allow the requestor to

delegate the authorization to perform the request. In this scenario,

the holder of some authorization token would create a delegated

authorization token specifying that it authorized the second entity to

use it's initial authorization. This would have to be checked for

acceptability by the issuer of the delegated token and the resource

accepting the token. Is this useful ?

5. Is authorization information private ?

Particularly in the case where authorization tokens are presented

with the GSI certificate, is there reason to obscure the authorization

information. It would seem that exposure of the detailed list of rights

(authorization tokens) a requestor might have would create a way

of targeting privileged identities. Merely exposing the authorizing

entity may not reveal too much information (though for authorizing

entities dedicated to high value credentials, this would be sufficient.

Since, in general, the requestor does not know the identity of the

relying party, how would this be done ?

4. Auditing

The issues with auditing are not well understood in the context of HEP

collaborative science. It is clear that the interest in “chargeback” style account

will be greater than in the past since the information will not only be used for

determining if resources are being fairly shared, but also whether production

commitments are being met. Auditing will have key roles in resource

allocation, incident handling, quality assurance, and operations management

in ways that will be different than in previous paradigms. These issues have

come up in our discussions, but it is quite likely there are significant issues yet

to resolve. In our discussions, auditing is distinguished from accounting in that

auditing is the system design aspect that ensures that actions can be traced

on demand within the agreed limits. Accounting is the process of summarizing

actions by (various) organization. It is our opinion that both will be more

important than before to audiences beyond the resource operator and that

auditing is the more urgent need and more intimately tied to authentication

and authorization.

1. Who is responsible for keeping what usage information ?

Every Grid entity that provides a service to another may need to be

audited by the relying service for troubleshooting. Defining who needs

to keep what, for how long, and to whom it may/should/must be made

available (and how) are important operational design issues.

2. Is reverse mapping from local identity to invoking Grid identity

available for appropriate accounting ? particularly in case of

mapping onto shared or transient local accounts ?

Since all Grid transactions will use Grid Identities and most currently

existing accounting and audit methods use local identities, it needs to

be made clear for what actions a Grid Resource must provide the

reverse translation (and to whom it should report the information).

3. Who defines what level of accounting is required and how ?

We believe this is largely a VO matter, but that sites will have internal

requirements for their management control, for debugging purposes.

Sites will also have requirements for standard interfaces for reporting

this information to minimize the need for multiple implementations.

PPDG Site AAA Mailing List

Last modified: Wed Jan 22, 2003

mailto:ppdg-siteaa@ppdg.net

	PPDG Site AAA Issues List
	Identity and Registration
	Each Grid entity (a person, a machine, or a process) that needs to engage in a Grid communication must have one (or more) Grid identities. The Grid Identity identifies the party in the Grid communications and must suitably resolve ambiguity. It may b
	Certificate Authorities
	The primary purpose of Certificate Authorities is
	certificates are unique,
	CA infrastructure is operated such that unauthori
	the certificate is delivered to the appropriate party.
	Registration Authorities
	Identifying the appropriate party is often separa
	determine that the person requesting the creation (or revocation) of an identity is the/an appropriate person to do so.
	determine that the person requesting the creation (or revocation) of an identity meets the qualifications required by policy.
	gathers all required information and verifies that it is correct and/or comes from a trusted source
	maintains the ability to contact the individual granted an identity in case of incident handling.
	Name Constraints
	In order to ensure that a Grid Identity is unique, namespaces for each CA are defined and namespace limitations need to be enforced. That is, policy in the system must deny certificates issued by CA X that are not within the namespace of the CA (NASA CA
	VO Membership Registration
	Sites, as resource providers, have a common requirement that users of their resources agree to an acceptable use policy. Since the CAs do not usually know which resources might be used, they are not in a position to act as agents for the sites. The VOs a
	Authentication
	Interactive User Authentication:
	Unattended User Authentication:
	Revocation of Authentication:
	Authorization
	Authorization is the process of determining whether the identity may be granted their request. An authorization token is some data, the possession of which, perhaps in conjunction with some other authentication or identity information (most commonly the
	The authorization decision process consists of a number of questions. Discussions of authorization engender a number of questions. The two sets are mixed below.
	Auditing
	The issues with auditing are not well understood

